If it's not what You are looking for type in the equation solver your own equation and let us solve it.
200=-16t^2+118t+2
We move all terms to the left:
200-(-16t^2+118t+2)=0
We get rid of parentheses
16t^2-118t-2+200=0
We add all the numbers together, and all the variables
16t^2-118t+198=0
a = 16; b = -118; c = +198;
Δ = b2-4ac
Δ = -1182-4·16·198
Δ = 1252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1252}=\sqrt{4*313}=\sqrt{4}*\sqrt{313}=2\sqrt{313}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-118)-2\sqrt{313}}{2*16}=\frac{118-2\sqrt{313}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-118)+2\sqrt{313}}{2*16}=\frac{118+2\sqrt{313}}{32} $
| 3x-7=5x-32 | | 7(t-3)+3t=5(2t+5)-9 | | 9x-23/4=3 | | 4n-6+2n=-18 | | -5(-2*4x)=-2(3+6x) | | 2/x=8/30 | | -4(1=17r)+32=-14r-13(20+6r) | | -0.2x-0.6=-0.2x-0.6 | | 13-7(a+2)=7+9 | | 44=142a | | 〖(x)〗^(1/4)+5〖(x)〗^(1/4)-22=0 | | 9+3a=7a-5 | | 10x=108-2x | | y=10•10+100 | | 4(x-1)=-6(x+2)+22 | | 12x^2+48x-18=0 | | 3.3+x=8 | | x-4.7=4.25 | | -65y(y-5)=y+-25 | | 3x+84.5=195.5 | | x+4.1=8.2 | | 5x+5=6x+10 | | 5.4+x=-6.9 | | 5(x-2)+9=3x-1 | | X=3x+84.5 | | -4n-2=4(-3n+2) | | (x-4)(x-9)(x-8)=0 | | -4n-2=4(-3n+2 | | 4^x=32 | | 18x2+x-4=0 | | X2-17x-52=0 | | x+1.6=9.7 |